
T H E R M O M E T R I C  M E A S U R E M E N T  O F  T H E  A B S O R P T I O N  

R A T E  F O R  D I F F U S I N G  P A R T I C L E S  
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A study is repor ted  for a flat specimen that absorbs  diffusing par t i c les  together with an  ab -  
sorbing probe  placed in the flux, whose act ivi ty may be g rea te r  than that of the specimen.  
The resu l t s  a r e  fotmd to differ  only slightly f rom the ideal case  of a probe with vanishingly 
smal l  act ivi ty.  

It  is common to employ a probe placed in a flux of pa r t i c les  or  heat  that is enter ing a surface  in o rder  
to obtain informat ion on the flux. The probe  per tu rbs  the flux, and this per turbat ion  cannot be neglected,  
e.g, ,  as in me a su remen t  of atomic recombinat ion p a r a m e t e r s  for  a gas in contact  with a solid. The atoms 
f rom the source  diffuse in a homogeneous medium and combine to give molecules  a t  the surface  of the ca ta -  
lyst .  Reactions of this type a r e  of considerable  p rac t ica l  impor tance ,  because  recombinat ion heats the 
ca ta lys t  considerably  [1]. 

The recombinat ion ra te  can be deduced f rom the t empera tu re  r i s e  [2], but the information is incom- 
plete because  the molecules  c a r r y  off pa r t  of the energy.  Also,  the r i s e  is ve ry  difficult  to measu re  ac -  
cura te ly  if the specimen has good heat  t r ans fe r  and is a l ready  hot. One the re fore  inser t s  near  the spec i -  
men a p robe  of the same mate r ia l  whose t empera tu re  is moni tored by a thermocouple .  The above situation 
a r i s e s  because  the surface  of the specimen is of low act ivi ty  and may absorb  even f ewerpa r t i c l e s  than does 
the probe.  

Here  we consider  the boundary-value problem corresponding to this ,  the apparatus (Fig. 1) having a 
geometry  chosen as  a compromise  between the requ i rements :  1) for convenience and complete information,  
2) mathemat ical  s implici ty  of the solution. A complete  solution is der ived ,  and i t  is shown that the probe 
can often be cons idered  as ideal (nonabsorbing). 

We solve Laplace ' s  equation in dimensionless  cyl indr ical  coordinates  (Fig. 1). 

The boundary conditions may be put as  

Also,  fl = r 0 / R  << 1 and 0 << 1. 
_y>2 > r% 

n(O, r, g)=  no; (1) 

-~r  ],=1-b~ =0; (2) 

~ I -t-Aft)n[ =0; 
OX x~l  x~ l  (3) 
A(r) = {A, 0 < r < p ;  

B, p < r < l ;  

On _[_ Oo n =0; r~+ ( x -  y)~=r 2. (4) 
0v 

We give the following to n(r ,  x, y) outside the probe  volume r 2 + (x 
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I n (x, r, g) =Xm (am ch amx + g m  sh amx) d o (amr) + h (g) lf(x -- g)2+d , v l/'(x +Y)2+ r2 + c,~(g) jo(%~r) s h a ~ x  
m sh %J  

The  f i r s t  sum in (5) r e p r e s e n t s  n(x, r) wi thout  the p r o b e ,  while  the f i r s t  two t e r m s  in the s q u a r e  b r a c k e t s  
give the funct ion for  a p o i n t  sink a t  x = y,  r = 0 and the m i r r o r  image  of this in the p lane  x = 0. The s o u r c e  
and s ink p e r t u r b  the d i s t r ibu t ion  n(x,  r) n e a r  the wal l s  bounding the r e a c t i o n  vo lume ,  and the r e m a i n i n g  
t e r m s  ba lance  this out.  

N e a r  the p r o b e  we have v e r y  c lo se ly  that  

1 
n(x, r, y)= h(y) ~/.ix_g),+r 2 +re(y, O, y), (6) 

w h e r e  re(x,  r ,  y) is the funct ion of  (5) wi thout  the f i r s t  t e r m  in the squa re  b r a c k e t s .  F r o m  (4) we get  

O~ m(y, O, g)=--~tm(g, O, y). (7) 
h (y) = - -  1-bOo 

We have  0 0 ~ 0.2 fo r  a meta l  p robe  with r 0 = 0.1 c m  at  r o o m  t e m p e r a t u r e ,  with a negat ive  t e m p e r a t u r e  c o -  
e f f ic ien t ,  so # is v e r y  sma l l .  F r o m  (5) and (7) we  have  

~[g~exp( - - c~g)  sh~mg+~am] 

h (y) = --p (8) 
�9 ~ny 

S I I 1  - -  

1 + ~ ~_~b~ (g) l ~ sh ~ g  1 
ro( n) m 

If  we can show that  the denomina to r  in (8) d i f fe r s  suf f ic ien t ly  l i t t le  f r o m  (1), h(y) will  be p ropo r t i ona l  to the 
u n p e r t u r b e d  funct ion h(y,  0), which is c o m p a r a t i v e l y  easy  to ca l cu l a t e ,  w h e r e a s  the flux en te r ing  the p r o b e  
is p ropo r t i ona l  to h(y): 

q (Y) = @ ovOn da = --4~h (g). 

This  m e a n s  that  the a t o m s  r a i s e  the p r o b e  t e m p e r a t u r e  by an  amoun t  p ropo r t i ona l  to h(y), p rov ided  of c o u r s e  
tha t  r ad i a t i on  can  be neg lec ted  [3]. 

F r o m  (2) we get  fo r  the tube wal ls  tha t  

f 

2 ; nnx 
b~ (y) = -- / -  s i n - -  

l 
0 

- 0 i v  (x - y ) % i  + 

1 I 
[ ( x _  g)2+i] 3/2 [(x -k y)2+ 113/2 

dx 

,1(-7) 
O +  

and f r o m  (3) f o r  the c l o s u r e  tha t  

X J0 (~m r) am (amsh aml + grn ch %fl) + A (r) XJo (amr) (am ch amt +gm sh aml) = O; 
rn  r n  

Jo (czmr) %~c~ (y) ct h % j  + A (r) X Jo (c~.~r) % (y) -k~ [ (l - -  g)~ + r ~]a/2 - -  [ ( / +  g) 2 + r 213/2 + A (r) V (l - ) ~ + r" 
m m 

(9) 

(lo) 
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Fig. i. The apparatus. 

1 
We can es t ima te  lo n f rom (9), and for 1/7r ~ 1 we readi ly  find that 
the f i r s t  sum in the denominator  in (8) can be neglected.  To e s t i -  
ma te  the second sum S(y) we find Cm f rom (11) for  the ease  of an 
over lapping spec imen ,  i .e . ,  we put A(r) = A ; const ,  which gives 

- ( z - y )  -~-  4 exp 
I S (y) ] < 2 , 5 +  l - -exp [--2~ (t - -  y)] - --~-.A exp [ - ~  (t--U] 

1 

In pr inc ip le ,  fl is the min imum dis tance  l - y  between the probe  center  and the spec imen.  Reasons of 
desig~ lead one to use  a smal l  p la te  as  a p robe  r a the r  than a sphere ;  if  the spec imen  is to be  unaffected by 
the subst i tut ion,  l - y  should be 2-3 t imes  fl [ ( / - y )  _ kfl]. F o r  a meta l  p robe ,  e.g. ,  gold, one gets s a t i s -  
fac tory  a c c u r a c y  for  k _ 2.5 and fl = 0.05 if the denominator  in (8) d i f fers  f rom 1 by not m o r e  than 3%. This  
means  that  we need consider  only the unper turbed  p r o b l e m ,  and we put 

h (y) = - -  F ~ (am ch ~ y  + g m  sh ~=y), 
m 

where  an is defined by (1): 

the gn should be calculated via (10). 

(13) 

20n o 
a~ = Jo (=~) (o=+ =~) ' 

(14) 

The p robe  makes  a contr ibut ion 0 0 ~ 0.2 to the concentra t ion that is 
not sma l l ;  but fl is sma l l ,  so the p robe  readings  a r e  approx ima te ly  propor t iona l  to the unper turbed  con-  
cent ra t ion ,  i .e . ,  to the value that  would be obtained with an ideal p robe  (e 0 = 0), and the e r r o r  can be l e s s  
than 00 by an o rde r  of magnitude.  

The unper turbed  p rob lem is solved by calcula t ing the gn via (10) ; these  a r e  na tura l ly  functions of A, 
B,  and p. F r o m  these  we de r ive  the fami ly  of cu rves  of (13) and c o m p a r e  these  with the obse rved  curves  
to define A, which c h a r a c t e r i z e s  the absorp t iv i ty  of the spec imen .  If  the r ing  and the tube a r e  made of 
l a rge ly  inact ive m a t e r i a l  (0, B << 1) ,  we can seek  a f i r s t - a p p r o x i m a t i o n  solution in t e r m s  of B. In this case  
p = 0 (continuous disc instead of a r ing),  and the a tom dis t r ibut ion can readi ly  be found via (10), where  A(r) 

= coilst = B: 

n (x, r) = ~ (a~ch 0~x + gosh ~,~.r) Jo (a~r), 
m 

with 

B ) (15) 
gO = __ a,, th ~mt + ~m ch' ~m l 

We see  f rom (14) and (15) that  a n  and ~m a r e  v i r tua l ly  zero  for n _> 1, s ince a0 -~ ( 2 0 ,  an - lr(n + 1 /4 )  
[4], which means  that  the radia l  dependence of the pa r t i c l e  concentra t ion  (due to the specimen)  is the g r e a t e r  
the m o r e  A di f fers  f rom B. We seek  gn in the fo rm gn = g~ + Cn; then (10), (14), and (15) give us an infinite 
s y s t e m  of a lgebra ic  equations for the en: 

cns,~ (~,~ ch cznl + B sh czr,l) + (A --  B) ~ [Sm,~c~ sh czml + smna'~ (1--  B th =ml ) ] =O. (16) 
m ch CCml c ~  / J 

Here  

P (~  s.~.= rJo (=.r) Jo (~mr) d r ;  s,, = ]~(=") 1 + " - - - r  �9 

0 

(17) 
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We terminate  the chain at n = N and sum with respec t  to m in (16) up to m = N to get a finite sys tem soluble 
by computer  methods.  We took N = 50, which should provide high accuracy  for any A and p. However, a 
d i rec t  calculat ion has the disadvantage that sys tem (16) must  be solved af resh  for each pair  of A - B  and ]3 
in o rder  to const ruct  the h(y) curves .  This difficulty can be avoided as follows. F i r s t  of all ,  we remain  
within the f ramework  of the f i r s t  approximation with r e spec t  to B and put 

c,~ sh %l  = 0 . ,  + B ~  

and from. (16) we get in place of the lat ter  two one -pa rame te r  sys tems  of equations: 

U, nS n ~nSn 

th th th c~nl (Dn; 
a~s~ ~.s~ ~m ~,~ (18) 

! E a~--s~; 

1 ~ a~ th ~ls~. 
~=- -P ~rn Ch ~m I 

We then use success ive  approximation with r e spec t  to (A-B)  p = X, which remains  less  than 1 if p is not 
too l a rge  even when the specimen absorbs  the a toms completely:  

1) ~ ~i+~mi Xi+l~ (19) 

Here 

( ~ ~  o_-{hc~n[( 1In o)  - -  ; % . . . .  @~ ; 
~nSn O~u $n 

CZnSn m P 

(Zn Sn ~Zn m ~) 

Then the h(y) of (13) can be put as  

h (x) = ~ (x) + ~ Z~*% (x) - -  BP (x) + B ~ ; + %  (x) = h, (x) + ~h~ (x). (21) 
i i 

All the functions in (21) can be calculated in advance via computer  use of (17)-(20) by specifying once only 
the set  of 0 and p together with the points x i (i = 1, 2 . . . . .  p) at  which the probe will be placed: 

E chan(l--x)' Z an shc*nx 

(22) 
Sh~nX 

n sh anl ' n sh ~znl 

The unknown A - B  (or ~) is fonnd as follows. The probe tempera ture  is a l inear function of h: 

T (x) = K [h 1 (x) + Bh 2 (x)]. 

The set  of observed points T i (x = x i) is used in a l ea s t - squa re s  t rea tment ,  with minimization of 

J(K, B, )~)= 2 [ T(x~) ] (23) 
i 

From ~J/OK = 0, 0J /3B = 0 we get K = K(~), B = B(~), and then a direct machine search on ~ is used to 
find the minimum in (23). It is convenient to start with the ~0 found via (21) in the first approximation with 
respect to ~ and f o r D=  0. In that case it is best to use 0 J / 0 ~  = 0, and then 
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1 P f~ (x~) P % (xi,) ~2 (xi,) , ~  ?o (,'c+) TT, '7~ % (xl) " 

r~, ' 

% (x:~,) ~ (x~,) 

Then a s ea r ch  is  made for J(1)  between 0.254 20 and 3.453 ~0, with each success ive  ~ differ ing by 
10% f rom the p rev ious  one (27points  i n a l l ,  ~ t = l . l t l 0  ( t=  0 , 1 ,  . ,13) ,  ~ s = 0 . 9 s ~ 0  ( s = 1 , 2  . . . .  , 1 3 ) ) .  
The number  of t e r m s  in the sums  with r e s p e c t  to j in (21) is taken with a ce r t a in  ma rg in  of safe ty  on the 
bas i s  of ~0. In al l  c a se s  i t  has  been sufficient  to take Jmax = 10, and the min imum in (23) falls  in this 
range .  

n(x, r ,  y) 
n(x, r) 
X ,  r 

/,Y 
r 0 
n o 
P 
0 = 71Rc/2D;  
00 = 70r0c/4D; 
A (r) = 3,Re/4D ; 

71 
Y0 
7 
R 
C 

D 
P 

Jm(z), Im(z) 

NOTATION 

is the dis t r ibut ion of the a tomic  concentra t ion  in the p r e s e n c e  of the probe;  
is  the s ame  in i ts  absence ;  
a r e  the coordinates  of the point of obse rva t ion  in a cyl indr ical  coordinate  s y s t e m  with 
the tube radius  as  a unit of length; 
a r e  the longitudinal coordinates  of the spec imen  and p robe  r e spec t ive ly  in the s a m e  units;  
is the radius  of p robe  as  taken as  a sphe re ,  cm;  
is the a tomic  concentra t ion  produced by the sou rce  a t  x = 0 in the tube, cm-~;  
is the radius  of spec imen;  

is  the recombina t ion  coeff ic ient  for  gas a toms  a t  the tube wal ls ;  
is the s ame  for  the p robe ;  
is the s ame  for  the spec imen  plus r ing;  
is  the tube rad ius ,  cm;  
is  the mean  the rma l  speed of the a t o m s ,  c m / s e c ;  
is the diffusion coeff ic ient ,  c m 2 / s e c ;  
is  the internal  no rma l  to su r face  of p robe ;  
a r e  the o rd ina ry  and modified cyl indr ica l  functions of o rde r  m.  

1. 
2. 
3. 
4. 
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