THERMOMETRIC MEASUREMENT OF THE ABSORPTION
RATE FOR DIFFUSING PARTICLES
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A study is reported for a flat specimen that absorbs diffusing particles together with an ab-
sorbing probe placed in the flux, whose activity may be greater than that of the specimen.
The results are found to differ only slightly from the ideal case of a probe with vanishingly
small activity.

It is common to employ a probe placed in a flux of particles or heat that is entering a surface in order
to obtain information on the flux. The probe perturbs the flux, and this perturbation cannot be neglected,
e.g., as in measurement of atomic recombination parameters for a gas in contact with a solid, The atoms
from the source diffuse in a homogeneous medium and combine to give molecules at the surface of the cata-
lyst. Reactions of this type are of considerable practical importance, because recombination heats the
catalyst considerably [1].

The recombination rate can be deduced from the temperature rise [2], but the information is incom-
plete because the molecules carry off part of the energy. Also, the rise is very difficult to measure ac-
curately if the specimen has good heat transfer and is already hot. One therefore inserts near the speci~
men a probe of the same material whose temperature is monitored by a thermocouple. The above situation
arises because the surface of the specimen is of low activity and may absorb even fewer particles than does
the probe,

Here we consider the boundary-value problem corresponding to thig, the apparatus (Fig. 1) having a
geometry chosen as a compromise between the requirements: 1) for convenience and completé information,
2) mathematical simplicity of the solution. A complete solution is derived, and it is shown that the probe
can often be considered as ideal (nonabsorbing).

We solve Laplace's equation in dimensionless cylindrical coordinates (Fig. 1).

The boundary conditions may be putf as
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Also, 8 =1y/R «1and § «1. We give the following to n(r, X, y) outside the probe volume r? + (x
—y¢ > 1}

Institute of Materials Science Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol, 18, No, 5, pp. 795-801, May, 1970. Original article
submitted January 28, 1967,

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

544



: ! AN sho, x
I/(x_y)z+,z“1/r(x+y)2+2+/_‘c m () Jo (@) S

nix, r, o) =2 (ay, cho,x + gn sho,x) Jo(a,r) 4 A (y) [

I ( qnr )
0 . . |+
+ Y00 LT s (20) — 0 o) =0, )
" ,(ﬂ_ !
L
The first sum in (5) represents n(x, r) without the probe, while the first two terms in the square brackets
give the function for a point sink at x =y, r = 0 and the mirror image of this in the plane x = 0. The source

and sink perturb the distribution n(x, r) near the walls bounding the reaction volume, and the remaining
terms balance this out.

Near the probe we have very closely that

n(x,{r, y):h(y)' +m(y, Ov. y)’ (6)

Ve
where m(x, r, y) is the function of (5) without the first term in the square brackets. From (4) we get
h(y)—~l3 9 my, 0, y) = —um(y, 0, y). (7
(1}

We have 8, ~ 0.2 for a' metal probe with ry = 0.1 cm at room temperature, with a negative temperature co-
efficient, so u is very small, From (5) and (7) we have

E[gmeXP( ot) + Sh“’”f m]

B = —4 2 -

sha,y 1
e Y L +ME w0~

If we can show that the denominator in (8) differs sufficiently little from (1), h(y) will be proportional to the
unperturbed function h(y, 0), which is comparatively easy to calculate, whereas the flux entering the probe
is proportional to h(y):

(8

on
9(y) = <§—— do = —4xh (y).
v
This means that the atoms raise the probe temperature by an amount proportional to h(y), provided of course
that radiation can be neglected [3].
From (2) we get for the tube walls that
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and from (3) for the closure that
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4~ O We can estimate by, from (9), and for I /7 ~ 1 we readily find that
:_ﬁ__ [dd ’ the first sum in the denominator in (8) can be neglected, To esti-
‘ mate the second sum S(y) we find ¢y, from (11) for the case of an
L overlapping specimen, i.e., we put A(r) = A = const, which gives
2l
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In principle, g is the minimum distance 7 —y between the probe center and the specimen, Reasons of
design lead one to use a small plate as a probe rather than a gphere; if the specimen is to be unaffected by
the substitution, I~y should be 2-3 times g [(I -y} = kg]. For a metal probe, e.g., gold, one gets satis-~
factory accuracy for k = 2.5 and g = 0,05 if the denominator in (8) differs from 1 by not more than 8%. This
means that we need consider only the unperturbed problem, and we put

h(y) = -—HE (am ch Al + &m sh amy)i (13)

where an is defined by (1):

o %n (14)

 ofon) B+ an)

the gy, should be calculated via (10). The probe makes a contribution 65 ~ 0.2 to the concentration that is

not small; but 8 is small, so the probe readings are approximately proportional to the unperturbed con-

centration, i.e., to the value that would be obtained with an ideal probe (8, = 0), and the error can be less
than 6y by an order of magnitude.

n

The unperturbed problem is solved by calculating the g, via (10); these are naturally functions of A,
B, and p. From these we derive the family of curves of (13) and compare these with the observed curves
to define A, which characterizes the absorptivity of the specimen. If the ring and the tube are made of
largely inactive material (§, B « 1), we can seek a first-approximation solution in terms of B. In this case
p = 0 (continuous disc instead of a ring), and the atom distribution can readily be found via (10), where A(r)
= const = B:

nx, r)= 2 (anch e, x + g0 sho, %) Jy (apr)
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We see from (14) and (15) that ap and g, are virtually zero for n = 1, since ap ~ V260, an = 7(n+1/4)

{4], which means that the radial dependence of the particle concentration (due to the specimen) is the greater
the more A differs from B. We seek gp in the form gp = gh + cp; then (10), (14), and (15) give us an infinite
system of algebraic equations for the cp:
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We terminate the chain at n = N and sum with respect to m in (16) up to m = N to get a finite system soluble
by computer methods., We took N = 50, which should provide high accuracy for any A and p. However, a
direct calculation has the disadvantage that system (16) must be solved afresh for each pair of A—B and B
in order to construct the h(y) curves, This difficulty can be avoided as follows. First of all, we remain
within the framework of the first approximation with respect to B and put

emsha,l =@y, + By,

and from (16) we get in place of the latter two one-parameter systems of equations:
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We then use successive approximation with respect to (A—~B) p = A, which remains less than 1 if p is not
too large even when the specimen absorbs the atoms completely:

@,,:2 ML g, = T A (19)
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Then the h(y) of (13) can be put as

() = Q) + ¥ W, () — BP (1) + B FA*0; (x) = by (x) 4 Bhy (x). (21)
i i
All the functions in (21) can be calculated in advance via computer use of (17)~(20) by specifying once only
the set of § and p together with the points x;(i=1,2, ..., p) at which the probe will be placed:
ha, (I —x), Y a, sha,x
Q(x):van(‘:‘_“_““‘—“ Px:zvl_,._l_.,
A,," cha,l ® o, chapy!

(22)
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The unknown A —B (or ) is found as follows. The probe temperature is a linear function of h:
T (x) = K[hy (x) + Bhy ()l

The set of observed points Tj (x = xj) is used in a least-gquares treatment, with minimization of

JK, B, ) — 2; Tl lr- (23)

From 8J /0K =0, 93/ 0B = 0 we get K = K(A), B = B(A), and then a direct machine search on ) is used to
find the minimum in (23). It is convenient to start with the ), found via (21) in the first approximation with
respect to A and for B = 0, In that case it is best to use 8J/82 = 0, and then
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Then a search is made for J(}) between 0.254 A, and 3.453 A, with each successive ) differing by
10% from the previous one (27 points in all, Ay = 1.1t7\° (t=0,1,...,13), Ag= 0.957\o (s=1,2,...,13)).
The number of terms in the sums with respect to j in (21) is taken with a certain margin of safety on the
basis of A;. Inall cases it has been sufficient to take jymax = 10, and the minimum in (23) falls in this

range.
NOTATION
n{x, r,y) is the distribution of the atomic concentration in the presence of the probe;
n(x, r) is the same in its absence;
X, T are the coordinates of the point of observation in a cylindrical coordinate system with
the tube radius as a unit of length;
l,y are the longitudinal coordinates of the specimen and probe respectively in the same units;
ry is the radius of probe as taken as a sphere, cm;
n, is the atomic concentration produced by the source at x = 0 in the tube, cm™>;
p is the radius of specimen;
9= 'yiRC / 2D;
8= oroc/4D;

A(r) = yRe/4D;

ttjotd~<§§

Jm(Z) ’ Im(z)

is the recombination coefficient for gas atoms at the tube walls;
is the same for the probe;

is the same for the specimen plus ring;

is the tube radius, cm;

is the mean thermal speed of the atoms, cm/sec;

is the diffusion coefficient, cm? /sec;

is the internal normal to surface of probe;

are the ordinary and modified cylindrical functions of order m,
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